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Abstract
We present a method for calculating the boundary of objects from Discrete Indicator Functions that store 2-
material volume fractions with a high degree of accuracy. Although Marching Cubes and its derivatives are ef-
fective methods for calculating contours of functions sampled over discrete grids, these methods perform poorly
when contouring non-smooth functions such as Discrete Indicator Functions. In particular, Marching Cubes will
generate surfaces that exhibit aliasing and oscillations around the exact surface. We derive a simple solution to re-
move these problems by using a new function to calculate the positions of vertices along cell edges that is efficient,
easy to implement, and does not require any optimization or iteration. Finally, we provide empirical evidence that
the error introduced by our contouring method is significantly less than is introduced by Marching Cubes.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

An indicator function of a closed object is a function that
is one on the interior of the object and zero on the exterior.
These functions may be complex to evaluate and store de-
pending on the complexity of the shape they represent. In
practice, we use a Discrete Indicator Function (DIF) that rep-
resents the indicator function using a uniform grid of func-
tion values. In a DIF, each cell in the grid stores the fraction
of the cell contained by the object, which is equivalent to
the integral of the continuous indicator function inside the
cell volume divided by the volume of the cell. Cells that are
entirely exterior or interior to the object will have values of
either zero or one, but cells on the boundary of the shape
will have values between zero and one. These DIFs form an
implicit representation of an object, and we can reconstruct
an approximation of the underlying object by taking a level
set of the function at value 1

2 .

DIFs arise in several areas of Computer Graphics. Per-
haps, the most commonly seen example of a DIF is the pix-
els used to display an anti-aliased font on a computer screen.
Although the screen is composed of discrete pixels, fonts ap-
pear to have smooth outlines because, rather than using only
white and black, values of gray are used to show how much
of a glyph is in each pixel. Beyond fonts, there may be appli-
cations where arbitrary images need to be converted from a
pixel to a vector format. For example, it may be desirable to

magnify a low-resolution image that contains hard bound-
aries. While typical pixel-based magnification results in a
blurred image, finding a contour first produces a far crisper
and more aesthetic result, as demonstrated by Valve Soft-
ware [Gre07] in their newest games. Once a discrete contour
has been calculated, it is then possible to draw the contour
with hardware acceleration [LH06].

In image processing, DIFs are also often found when
compositing multiple images. For example, it is common to
film objects in front of a blue or green screen and remove
the background by calculating an anti-aliased mask at each
pixel. A pixel-based composition of many overlaid objects
may produce an undesirable, aliased result where multiple
boundaries overlap unless an accurate vector-based compo-
sition is calculated using the contours of the objects.

Analogs of DIFs are also encountered in medical imaging.
In a CAT (Computerized Axial Tomography) scan or MRI
(Magnetic Resonance Image) there are structures such as
bones or tumors that stand out from the background and have
clear boundaries that need to be drawn. In the 3D case of an
MRI, these boundaries define a 3D surface. Surface bound-
aries are also found in other areas of computer graphics. For
example, Eulerian simulations of water physics define occu-
pancies over a 3D grid. Any inaccuracies in calculating the
air/water interface from the DIF results in high-frequency
noise or ripples that do not exist in the simulation. Another
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Figure 1: A DIF representing a complex shape sampled over a 5123 grid. From left to right: Marching Cubes, Marching Cubes
after a Gaussian blur of size 3, Marching Cubes after a Gaussian blur of size 7, and our method without blurring. Blurring
increases the smoothness of the Marching Cubes surface but sacrifices details in the shape.

important occurrence of a DIF is during reconstruction of an
object’s surface from a point cloud. There are several surface
reconstruction methods [Kaz05, KBH06, MPS08] that inter-
nally calculate a DIF of the reconstructed object from which
they then extract a surface.

In the past, contouring methods have focused on smooth
functions rather than on DIFs. We believe that DIFs are an
important subclass of functions for which people typically
calculate suboptimal contours. The inaccuracies in calcu-
lated surfaces are often small in scale, but can have large
visual effects on the texture, lighting, refraction, and reflec-
tion of an object. In this paper, we describe a simple algo-
rithm that is tailored to find accurate contours in the specific
case of DIFs.

1.1. Contribution

We describe a simple modification to standard contouring
algorithms, such as Marching Cubes (MC), that enhances
the quality of contours calculated from DIFs. Our analysis
shows that the linear interpolation in these methods can be
replaced by our new interpolant to estimate the position of
the contour more accurately. Our interpolant has four cases,
and the two most common cases are extremely simple to cal-
culate. We also provide qualitative and quantitative compar-
isons between the interpolants that show our method clearly
improves the contours of DIFs.

2. Related work

The simplest and most often used strategy for calculating
implicit contours of functions is to contour cells of a reg-
ular grid independently from one-another using algorithms
like MC [WMW86,LC87]. In our examples, we assume that
samples are taken at the centers of cells and therefore run
MC over the dual grid. Because the possible values of the
DIF are between zero and one, it is natural to define the con-
tour to be where the DIF has a value of 1

2 . MC determines

the topology of a cell from a lookup table indexed by an
eight-bit integer where each bit corresponds to one of the
eight corners of the cell and is set to 0 if the corner is outside
the solid or 1 if inside. In MC, the function is assumed to be
smooth so that over short distances, like the span of a cell,
the function can be approximated as a linear function. Ver-
tices of the surface passing through each cell are therefore
placed along the edges of the cells where the line interpolat-
ing the connected grid values has a value of 1

2 .

When a function is smooth, it can be approximated by lin-
ear functions at small scales, but indicator functions are in-
herently discontinuous, which means that a linear interpolant
is not a suitable approximation of a DIF. Therefore, using a
linear interpolant on a DIF will produce a contour that devi-
ates from the ideal contour. Although these deviations may
be small in absolute scale, they are easily visible on a lit sur-
face because angular deviation of surface normals is inde-
pendent of sampling resolution. Inaccuracies in the surface
follow a regular pattern determined from the grid and create
noticeable aliasing. This results in an easily visible, high-
frequency pattern rather than uniform noise (see Figure 1).

Because MC only works well with smooth functions, a
common solution to the aliasing problem is to generate a
smooth function by applying a low-pass filter to the input
function. Although applying a Gaussian filter [MGS96] is
the simplest solution, more sophisticated methods have been
used [WK93, WK94]. Unfortunately, the contour extracted
from the smoothed function may lose high-resolution details
present in the input function.

While many researchers have worked on modifying and
extending MC, they have focused on areas other than the
interpolation function. For example, there has been a lot
of interest in calculating closed contours over adaptive
grids. Many of these methods, such as Dual Marching
Cubes [SW04] and Unconstrained Isosurface Extraction on
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Arbitrary Octrees [KKDH07], reduce to MC in regions that
have uniform sampling.

In contrast, some methods [CWA∗07, GF98, RBB05,
WJ03] assume the function provides no information besides
classifying the vertices as belonging to a particular solid. In
the simplest case of binary segmented data (inside/outside),
these methods have a similar goal to our method in that they
attempt to calculate a smooth boundary to an indicator func-
tion. The difference is that the grids they operate on do not
store fractional occupancies like DIFs. This means that any
initial guess of these methods is necessarily non-smooth, and
a filtering pass is required to fix the poor initial guess.

The Surface Nets algorithm [GF98] segments a DIF with
a contour that is both smooth and guaranteed to be within
one pixel of the true contour, but it does so at a high com-
putational cost. Surface Nets first creates an initial guess
of the contour by creating a contour that is dual to the in-
put grid. The method then performs an iterative relaxation
of the surface while enforcing constraints that prevent sur-
face vertices from exiting their dual cells. Similarly, Press-
ing [CWA∗07] calculates an initial guess but, before apply-
ing iterative relaxation along cell edges, constrains patches
that are detected as planar. In these methods, a constrained,
iterative smoothing operation is required to remove the ob-
vious aliasing that is present in the initial guess. Our method
is much more efficient because we produce a contour that is
free of aliasing without any iteration or optimization.

Several methods have also been proposed for contouring
multi-material volume fractions stored in a grid. Contouring
a DIF can be viewed as the two-material case of this more
general problem. The multi-material contouring method dis-
cussed by Bonnell et al. [BDS∗03] extends Marching Tetra-
hedra (MT) to the multi-material setting. However, this
method degenerates to linear interpolation with two materi-
als and generates surfaces with the same oscillations as those
introduced by MC on DIFs.

Another approach to solving the multi-material problem
is to use particles that repel each other and are attracted to
the interface between materials [MWK∗08]. A costly Delau-
nay triangulation of the particles can then be used to produce
triangles with good aspect ratios. However, the restorative
forces that place particles on the boundary require a smooth
function, which the authors achieve by blurring the mate-
rial composition functions. This results in the same loss of
quality and volume preservation that affects the surface re-
constructed from a blurred function in MC.

Anderson et al. propose two methods of contouring multi-
material volume fractions. The first method [AGDJ08] finely
subdivides each cell and randomly assigns subcells to be dif-
ferent materials so that the ratio of materials in the subcells
approximate the volume fractions in the original cells. Sub-
cells are then randomly swapped in a simulated annealing
minimization of the surface area between material types. Be-
cause each subcell can be only one material type, the result-

ing surface contoured over the subcells will still be blocky.
In their second paper [AGDJ10], the authors address this
problem by solving for new vertex positions that minimize
surface curvature. Unfortunately, the accuracy of volume
preservation is determined by the level of subdivision and,
even for a highly subdivided grid, the proposed energy func-
tional does not prevent oscillations in the contoured surface.

There have also been several recent techniques designed
to improve the quality of the triangles in surfaces produced
by MC [HW90, SSS06, RW08, DSC∗08, DSS∗09]. These
methods typically modify the topology of the surface pro-
duced by MC to avoid long, skinny triangles. Unfortunately,
the visual artifacts from using MC on DIFs arise from the
incorrect assumption that the underlying function is smooth.
Our technique improves surface geometry by correcting that
assumption. Methods that improve triangle quality of MC
surfaces solve an orthogonal problem and can (perhaps even
should) be used in conjunction with our method.

3. Calculating contours from DIFs

Our input is a DIF in which we are given the fractional occu-
pancies for cells in a regular grid. Since every sampled value
corresponds to a cell volume, we consider samples to be lo-
cated at the center of cells, and we connect the samples with
a dual grid. Our contouring method is a simple modification
of MC in which we replace the function that calculates ver-
tex positions along cube edges. For simplicity we will first
analyze the 2D case where areas are stored for each cell and
contours are lines rather than surfaces. We then apply the
technique to 3D data in Section 4. Instead of assuming that
the contoured function is smooth along a dual edge and can
be approximated by linear interpolation, we solve for a con-
tour line that separates the inside/outside of the object so that
the inside area matches the occupancy values of the cells. We
then place the contour vertex at the intersection of the con-
tour line and the dual edge.

There are only a few ways in which a linear surface can
pass through a pair of cells in a 2D grid. Without loss of
generality, we consider a pair of unit cells whose bottoms
are on the y = 0 axis and that join along x = 0 as shown
at the top of Figure 2. In this figure, the black lines are the
primal cells, the blue line is a dual edge between function
samples, and the red line is the estimated line separating ex-
terior regions (white) and interior regions (pink). We also
assume that the occupancy of the left cell a1 is less than that
of the right cell a2 so that a contour intersects the dual edge
when a1 ∈

[
0, 1

2

)
,a2 ∈

[
1
2 ,1
]
. To remove symmetric cases,

we also assume that the contour line we estimate is oriented
upward (i.e. the y-component of the normal is positive). In
each cell, the contour can pass through either a horizontal or
vertical border, excluding the shared border. Since there are
two cells, there are a total of four possible configurations,
which we enumerate in Figure 2; Case 1 is side-side, Case 2
is bottom-top, Case 3 is bottom-side, and Case 4 is side-top.
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Figure 2: We show the coordinate systems of adjacent cells
and their dual edge on top. Below, we show the four config-
urations in which a line can intersect the cell edges. Inter-
sected edges are highlighted in light blue. The end points of
the contour line are labeled in case 2.

Because there are multiple ways a line can intersect the
pair of cells, there are two steps to finding an intersection
with the contour. First, we must determine which case to use
based on the values of a1,a2. Second, we must find the in-
tersection between the dual edge and the estimated contour.

Our strategy for all of the cases is to first calculate the
equation for the contour line. Our lines will always be of the
form y = mx+ b with m = y2−y1

x2−x1
and b = x2y1−x1y2

x2−x1
where

(x1,y1) and (x2,y2) are the points at which the line inter-
sects the boundary of the two cells. Notice that one compo-
nent of each of the end-points is constrained for each of the
four cases. Once we determine the equation of the line, we
intersect the line with the dual edge p(t) to find the para-
metric value t where p(t) = p1(1− t)+ p2t and p1, p2 are
the centers of the corresponding cells. Notice that because t
is independent of translation, scale, and orientation, we can
apply this procedure to all edges in the grid.

3.1. Case 1

In this case, x1 and x2 are constrained to the left and right
sides of the cells, respectively. Therefore, x1 =−1 and x2 =
1. By integrating the line equations restricted to the cells, we
can also write the area bound by this line for each cell as

a1 =
∫ 0

x1

(mx+b)dx =
∫ 0

−1
(mx+b)dx = b− m

2
,

a2 =
∫ x2

0
(mx+b)dx =

∫ 1

0
(mx+b)dx = b+

m
2
.

Notice that y1 and y2 are the only free variables since a1 and
a2 are provided by the DIF, x1 and x2 are constrained, and
m,b are in terms of (x1,y1), (x2,y2). Furthermore, 0≤ y1≤ 1
and 0≤ y2≤ 1. If y1 and y2 are outside of this range, then the
values of a1 and a2 are incompatible with the way the line
intersects the edges of the cell and must correspond to one of
the other three remaining cases. Hence, we test for this case
by checking if the solutions for y1 and y2 are within their
valid ranges, which yields

0≤ 3a1−a2
2 ≤ 1,

0≤ 3a2−a1
2 ≤ 1.

(1)

If Equation 1 is true, then the intersection of our estimated
line with the dual edge is at

t =
a1− 1

2
a1−a2

. (2)

Interestingly, this case is identical to linear interpolation (i.e.
(1− t)a1 + ta2 =

1
2 ).

3.2. Case 2

In this case, intersection points are constrained to the bottom
of the left cell, y1 = 0, and the top of the right cell, y2 = 1.
The area bounded by the line in this configuration is given
by the integrals

a1 =
∫ 0

x1

(mx+b)dx =
b2

2m
,

a2 = 1−
∫ x2

0
(1−mx−b)dx = 1− (1−b)2

2m
.

Again, x1 and x2 are the only free variables in these equa-
tions. Furthermore, −1 ≤ x1 ≤ 0 and 0 ≤ x2 ≤ 1 yields the
conditions

0≤ 2a1 +2
√

a1−a1a2 ≤ 1,
0≤ 2−2a2 +2

√
a1−a1a2 ≤ 1.

(3)

Intersecting this line with the dual edge provides an ex-
tremely simple solution for the parameter t.

t =
3
2
−a1−a2 (4)

Notice that a1 and a2 are quadratic in b, so m and b have
two solutions. In Case 2 the solution for t is identical regard-
less of which solution we use. Cases 3 and 4 produce differ-
ent solutions depending on the choice of m and b, but only
one of these solutions is valid; that is, the line formed by m,b
intersects the boundary between adjacent cells in only one of
the two solutions. We show only the valid solutions to Cases
3 and 4, and these solutions are valid over the entire domain.
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Figure 3: For each of the four cases, we color the values of
a1 and a2 that correspond to that case and plot the function
value of t provided by that case (top). The bottom shows the
difference between our function and the values provided by
linear interpolation.

3.3. Case 3

In this case, our estimated line intersects the bottom of the
left cell, y1 = 0, and the right of the right cell, x2 = 1. Ex-
pressing a1 and a2 in terms of integrals gives

a1 =
∫ 0

x1

(mx+b)dx =
b2

2m
,

a2 =
∫ 1

0
(mx+b)dx = b+

m
2
.

In this situation, x1 and y2 are the free variables and must sat-
isfy−1≤ x1 ≤ 0 and 0≤ y2 ≤ 1. Solving for these variables
gives the conditions

0≤ a1+
√

a1(a1+a2)
a2

≤ 1,
0≤ 2a1 +2a2−2

√
a1(a1 +a2)≤ 1.

(5)

Finally, intersecting this line with the dual edge gives the
intersection parameter

t = 1− 2a2−1
8a1 +4a2−8

√
a1(a1 +a2)

. (6)

3.4. Case 4

The final case we consider is the situation where the esti-
mated line intersects the left side of the left cell, x1 = −1,
and the top of the right cell, y2 = 1. Again, we express a1
and a2 in terms of integrals, which yields

a1 =
∫ 0

−1
(mx+b)dx = b− m

2
,

Figure 4: The half-spaces (solid lines) used in the check for
case 1 segment the domain into 4 regions. The two smaller
regions are partitioned by quadratics (dashed lines).

a2 = 1−
∫ x2

0
(1−mx−b)dx = 1− (1−b)2

2m
.

For this case to be valid, 0 ≤ y1 ≤ 1 and 0 ≤ x2 ≤ 1. To
simplify the equations and show the symmetry with Case 3,
we substitute ā1 = 1−a2 and ā2 = 1−a1. Solving for y1,x2
gives the conditions

0≤ ā1+
√

ā1(ā1+ā2)
ā2

≤ 1,
0≤ 2ā1 +2ā2−2

√
ā1(ā1 + ā2)≤ 1.

(7)

When these conditions are true, we intersect our estimated
line with the dual edge and find that

t =
2ā2−1

8ā1 +4ā2−8
√

ā1(ā1 + ā2)
. (8)

3.5. Efficient case selection

From the previous description, it appears that 16 checks
are necessary to choose the correct case (4 inequalities are
shown for 4 cases). However, we reduce the number of
checks to 2 simple checks against lines with one additional
check that we perform 1

3 of the time.

First note that the two boundary half-spaces (a2≤ 3a1 and
3a2 ≤ a1 + 2) of Case 1 segment the domain into four re-
gions (shown in Figure 4). The region where the half-spaces
intersect is exactly Case 1. Notice also that the region that
intersects neither half-space contains only Case 2. Each of
these large regions occupies 1

3 of the domain. The remain-
ing regions contain Case 2 and either Case 3 or Case 4.
We differentiate these small regions by a single additional
test against a quadratic. Specifically, we select Case 3 if
(2a1 + 2a2 − 1)2 < 4a1(a1 + a2) and we select Case 4 if
(2ā1 +2ā2−1)2 < 4ā1(ā1 + ā2).
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Figure 5: Values of the DIF calculated from a linear func-
tion are shown in gray-scale. From the DIF, we calculate
contours using our method (red) and MC (cyan) where ver-
tices are placed along the blue lines of the dual grid.

3.6. 2D Summary

To summarize our algorithm in 2D, we check if there is an
intersection along each dual edge by determining whether
the values of the cells span 1

2 . If so, we use the method de-
scribed in Section 3.5 to determine which case the cell val-
ues correspond to. We then compute the parameter value t
along the edge using the corresponding formula for t in ei-
ther Equation 2, 4, 6, or 8 to find the intersection point and
generate the topology of the surface in each dual cell using
the MC algorithm.

Figure 4 shows the domains of the four cases according to
Equations 1, 3, 5, and 7. From the figure, it is easy to see that
the domains are disjoint except along the shared boundary of
the cases and that the domains cover the entire valid param-
eter range for a1, a2. Hence, for a given set of values a1, a2
in a DIF, exactly one of the four cases will apply. The top
of Figure 3 also shows a plot of the value of t given by the
corresponding cases and shows that the function is smooth
when transitioning between cases. Notice also that Case 1
corresponds exactly to linear interpolation, which produces
the discontinuity as a1, a2 both approach 1

2 .

Figure 3 (bottom) shows the difference between param-
eter values found using our intersection function and stan-
dard linear interpolation. Since Case 1 is identical to linear
interpolation, the difference is 0. However, the other three
cases are different from linear interpolation, and our func-
tion smoothly diverges from linear interpolation up to nearly
a tenth of a grid cell. Our method reproduces straight lines
exactly because we directly calculate the intersection of lines
with cells. Therefore, linear interpolation underestimates the
distance to linear contours in cases where a1 is small. Like-
wise, linear interpolation overestimates the distance to linear
contours when a2 is large.

Figure 5 shows a 2D example where we reconstruct a
straight line from a DIF. The red line represents our method
and the light blue line represents the contour created by MC

using linear interpolation. Our method exactly reproduces
the original linear function represented by the DIF. The os-
cillation effect that is apparent in the MC reconstruction re-
sults in normals that vary significantly from those of the orig-
inal surface.

Although we reproduce lines exactly, we do not preserve
the area of objects along curved boundaries. The linear func-
tions between pairs of cells that we show in Figure 2 preserve
the areas a1 and a2, and we place our vertex at the point
where these lines intersect the dual edges. However, when
we connect these vertices using the MC table, we do not re-
produce the areas in the cells if the resulting contour is not
a straight line. In general, our method generates shapes that
underestimate areas in regions with positive curvature and
overestimate areas in regions with negative curvature.

4. Extension to 3D

In 2D we were able to derive the intersection function de-
fined in Figure 3 because the equation for a line has two de-
grees of freedom. The two areas in adjacent cells, a1 and a2,
therefore determine a unique line. However, a 3D solution is
more complicated because a plane has three degrees of free-
dom and is not fully constrained by two samples. Although
only one more grid sample is required to fully determine a
plane, there is no symmetric choice of a single additional
sample. Preserving symmetry therefore requires all neigh-
bor cells and over-constrains the problem. While we could
find a separating plane using a non-linear least squares min-
imization, we propose a simpler solution.

Given an edge of the 3D dual grid, let a1 and a2 repre-
sent the occupancies of the cubes that the edge connects. If
a1 <

1
2 ≤ a2 or a2 <

1
2 ≤ a1, the surface intersects that edge,

and we place a vertex on the edge using the 2D method in
Section 3. Specifically, we choose between the four cases us-
ing a1,a2 as described in Section 3.5 and find t using Equa-
tions 2, 4, 6, and 8.

The intuition for why this works is that one can imagine
extruding Figure 2 out of the page into 3D. When the sepa-
rating plane aligns with a Cartesian axis, the 3D case reduces
to 2D. This 2D reduction is imperfect for unaligned planes,
but still provides a reasonable approximation. While we can-
not reproduce all 3D linear functions exactly from just a1
and a2, we find that this simple, efficient technique works
remarkably well in practice.

5. Analysis

Our algorithm exactly reproduces two dimensional lines.
This property is important because it is precisely in flat re-
gions where aliasing patterns are most noticeable. Moreover,
accurate reproduction of normals is especially important in
3D because we perceive surfaces mainly through the way
light interacts with the surface, which depends on the nor-
mals of the object.
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Figure 6: The maximum and average errors in normal di-
rection are plotted for spheres with radius varying from one
to thirty cells. Once the radius is approximately fifteen, the
maximum normal error from our method is equal to the av-
erage error of Marching Cubes.

A visual comparison of the MC contours and our con-
tours shown in Figures 1, 8, and 9 indicates that applying
the 2D equations to 3D works well. For example, Figure 9
shows an example of reconstructing an armadillo man from
a DIF using MC (top) and our method (bottom). The MC
surface is extremely noisy and obscures small details in the
model, whereas our reconstruction produces a much higher
quality surface that does not obscure small details in the re-
constructed surface. It is even possible to see the edges from
the polygons of the original surface used to create the DIF in
our reconstruction.

Beyond providing visual comparisons between methods,
we quantitatively compare surfaces with different curva-
tures. We compare MC and our method on surfaces of con-
stant curvature by looking at spheres that vary in radius from
one up to thirty cell widths. We calculate the percent oc-
cupancy of each boundary cell over a million samples and
then compare the difference between the reconstructed sur-
faces and the true sphere by firing ten million rays from the
sphere’s center in different directions. For each ray, we mea-
sure the distance between intersections of the reconstructed
surfaces and the ideal sphere as well as differences in their
normals. We eliminate bias introduced from the position of
the sphere with respect to the grid by adding random offsets
to the spheres averaged over one hundred trials.

Figure 6 shows the difference in the error of surface nor-
mals between the surfaces created using our intersection
function and MC as curvature decreases. This figure shows
both the maximum difference between normals of the ex-
tracted surfaces and the analytic spheres as well as the aver-
age error. The error for the MC surface is shown in blue and
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Figure 7: For a sphere with radius of ten cells, we calculated
contours that positioned vertices using linear interpolation
(MC), using our intersection function (Ours). We also mea-
sure the error from placing vertices directly on the sphere’s
surface (Ref). The distribution of distances from an exact
sphere is shown on the left, and the distribution of normal
errors is shown on the right.

the error for our surface is shown in red. As the radius of the
spheres increases, the surface becomes locally planar and the
average error in the normals of our surface almost vanishes,
whereas the error for the MC surface ceases to improve. In
fact, for a sphere with a radius of fifteen cells or more, even
the maximum error from our method is as good as or better
than the average error for surfaces produced by MC.

Figure 7 shows the distribution of error in positions and
normals for spheres with a radius of ten cells. We compared
the MC surface (blue), our surface (red), and a reference
surface with vertices directly on the surface of the sphere
(dashed green). The reference surfaces bound the quality our
vertex placement algorithm. Notice that even the reference
surface underestimates the radius of the sphere by an average
of about 0.02 cells, because vertices are connected with pla-
nar polygons. Our method and MC both underestimate the
sphere’s radius by approximately 0.03 cells, but our method
has a much smaller standard deviation akin to that of the ref-
erence surface. Our contour is very accurate for nearly planar
surfaces (spheres with large radii), but linear interpolation is
up to ten percent different from our interpolant, which gives
MC a larger error distribution. The surface produced by our
method reproduces normals of the sphere nearly as well as
the reference surface does. In contrast, the normals of MC
surfaces deviate significantly from those of the sphere.

In 2D, we exactly preserve areas of lines, but we do not
preserve volume of planes in 3D. To determine how accu-
rately we preserve the volumes of planes in 3D, we analyti-
cally calculate the occupancies of cells from planes with ran-
dom orientations and positions. We contour these functions
with both MC and our method and compute the absolute dif-
ference in volume between the reconstructed surfaces and
the exact plane on a per cell basis. The standard deviation of
the difference in reconstructed volumes sampled over 5000
planes was 2.76% for MC, whereas the standard deviation
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Figure 8: When lighting and reflection are applied to 3D
surfaces, the ripple patterns produced by Marching Cubes
(left) are especially obvious compared to our method (right).
Top: surfaces using diffuse lighting and specular highlights.
Bottom: reflection lines.

was only 0.07% for our method. The average absolute dif-
ference in volume was 8.36% for MC and only 0.46% for
our method. These results demonstrate that our method pro-
vides a good approximation of arbitrary 3D planes.

Although statistics show a clear difference between con-
touring methods, these numbers cannot adequately convey
the displeasing banding patterns present in MC surfaces.
Figure 8 shows a sphere generated by MC (left) and our
method (right) under typical lighting conditions (top) and
with a reflection map (bottom). The error in vertex positions
depends on the size of the grid used, but normal error is in-
dependent of grid resolution and is clearly visible.

We have focused our analysis on spheres of various cur-
vature, but our method works equally well for complex sur-
faces that have varying curvature. For example, the result of
contouring a DIF of the armadillo man with our method and
MC, shown in Figure 9, is striking. Figure 1 shows another
complex surface. In both of these examples, the DIF is calcu-
lated to very high precision so that errors in contouring dom-
inate errors in sampling. MC produces a surface with notice-
able ridges and, even after applying a blur with a Gaussian
kernel of size 3 and 7 to the DIF, the ridges in the MC surface
are still faintly visible on the chest. Although blurring makes
the surface smoother, it also destroys details of the original
shape. Moreover, blurring the DIF [MGS96] or performing
an iterative, constrained surface fairing [GF98] takes a sig-
nificant amount of time in addition to running MC. In con-

Figure 9: Our interpolant can find accurate surface inter-
sections for complicated discrete indicator functions like an
armadillo man sampled over a 5123 grid. For the high-
lighted region, we show a zoomed picture of the surface
found using linear interpolation (top) and the surface found
using our interpolant (bottom).

trast, our method produces a high quality surface without
any iteration. In terms of speed, we were unable to deter-
mine any significant difference in time between running MC
with linear interpolation and our method.

Although the formulation of our method assumes that the
input is a perfect DIF, perfect DIFs are hard to come by in
practice. We tested our contouring method in the presence
of noise by calculating an approximate DIF from laser range
scans of the head of Michelangelo’s David. We computed
the DIF with a wavelet reconstruction method [MPS08] us-
ing Haar wavelets and no blurring. The DIF is imperfect
both because of noise in the scanned data and from struc-
tured noise resulting from the scanned surface being open at
David’s neck. Notice in Figure 10 that ridges in the surface
are greatly reduced in our surface compared to MC, but the
improvement in quality is less than with perfect DIFs. Block
artifacts from using a Haar basis are visible in both contours,
but are partially obscured by the ridges from MC.

6. Conclusion and Future Work

Discrete indicator functions are an important class of im-
plicit functions that require special consideration to produce
accurate contours. Replacing the interpolation function used
in MC is both simple and effective. Indeed, the apparent vi-
sual improvement in the surfaces generated by our method
over MC is confirmed by our statistical analysis.

We should note that our method is specific to DIFs and
should not be applied to arbitrary functions. Our technique
is not appropriate in these situations, and linear interpolation
typically suffices. However, DIFs do arise in practice and, for
these functions, our method greatly improves the quality of
the extracted surface with essentially zero cost.

One drawback of our method is that we do not preserve
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Figure 10: Reconstruction of the head of Michelangelo’s
David using MC (left and top) and our interpolant (right
and bottom).

the volume of cells that intersect curved surfaces. Most
methods preserve volume by performing a global optimiza-
tion, but it may be possible to locally estimate the curvature
of a surface from the DIF or locally fit a curved object like
an ellipsoid to calculate a volume preserving surface. Fur-
thermore, our method is restrictive in that we only handle
two-materials as opposed to multiple materials considered
in volume fraction methods. We would like to investigate
the possibility of extending our approach to multiple materi-
als and preserving volume in the future.

In this paper, we have only considered situations in which
cells that intersect the contour are uniform in size, but it may
be possible to apply the principles of our method to adaptive
grids such as octrees. This may be more complicated be-
cause a plane passing through a large cell may pass through
any of the smaller cells bordering it so that more cells must
be considered. Additionally, is not clear that the problem is
always well defined, even in the 2D case.
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