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Abstract

We provide a simple method that extracts an isosurface that is manifold and intersection-free from a function over
an arbitrary octree. Our method samples the function dual to minimal edges, faces, and cells, and we show how
to position those samples to reconstruct sharp and thin features of the surface. Moreover, we describe an error
metric designed to guide octree expansion such that flat regions of the function are tiled with fewer polygons than
curved regions to create an adaptive polygonalization of the isosurface. We then show how to improve the quality
of the triangulation by moving dual vertices to the isosurface and provide a topological test that guarantees
we maintain the topology of the surface. While we describe our algorithm in terms of extracting surfaces from
volumetric functions, we also show that our algorithm extends to generating manifold level sets of co-dimension

1 of functions of arbitrary dimension.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

Volumetric data comes from a variety of sources such as CT
scanners or Magnetic Resonance Imagers (MRI). Volumet-
ric data is also synthesized in numerical simulations such as
computing electron densities around a molecule, pressure in
a fluid dynamics simulation, or neutron densities in a nuclear
reactor. In graphics, even surfaces are represented volumet-
rically through their implicit forms, which is useful when
performing Constructive Solid Geometry (CSG) operations.
However, exploring volumetric data can be difficult.

One way to visualize volumetric information is by com-
puting a level set of the volumetric function F : R3 — R at
some value c. The set of points { p € R3|F(p) = c} is called
an isosurface. Notice that, without loss of generality, we can
assume the isosurface is given by F(p) = 0 since the value of
¢ can be subtracted from the function. Isosurfaces are natu-
ral ways to visualize the data with clearly defined borders
between different volumetric regions. A skeleton in a CT
scan or a shock wave in a fluid simulation, for example, have
clear boundaries. Many surface reconstruction methods also
produce volumetric functions that clearly define the interior
and exterior of the reconstructed shape, and creating an iso-
surface to generate polygons is typically the last step in this
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process. Even without clear boundaries in the data, isosur-
faces are often helpful visual aids as they are faster to draw
and take less memory to store than volumetric data.

In particular, we examine the case where a function is
known for all points in a bounded region. Because we only
assume that the function is piecewise smooth and does not
have to be a distance function, generating accurate isosur-
faces can be challenging. The level set of F(p) may con-
tain very thin regions or sharp features that are commonly
produced during CSG operations. Moreover, uniform sam-
pling of F(p) is an inefficient strategy for calculating iso-
surfaces, because the majority of samples are far from the
surface. Therefore, we desire a method that creates a sur-
face from an adaptive sampling of the volumetric function.
Finally, the isosurface produced should be usable for other
post-processing applications such as finite element analysis.
These applications require that the isosurface is manifold to
avoid anomalies not present in real-world objects, meaning
that the surface must be locally equivalent to a disk in terms
of its topology and have vertices positioned to avoid self-
intersection.
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Figure 1: Dual Contouring (left) creates a single vertex per
cell and connects the vertices to adjacent cells sharing an
edge with a sign change resulting in non-manifold geometry
whenever an ambiguous sign configuration is encountered.
Dual Marching Cube (right) can create self-intersecting sur-
faces whenever the dual cells are non-convex. In both pic-
tures, the surface generated is depicted by a thick blue line.

Contributions

Our method extracts an isosurface using an octree partition-
ing of space. In particular, we provide

e a surface extraction method that produces a manifold sur-
face from an arbitrary octree,

e astrategy for placing dual vertices to reproduce sharp fea-
tures of the isosurface or thin features beyond the sam-
pling resolution of the octree,

e a method for reducing the number of polygons in the iso-
surface and improving the quality of the resulting surface
by placing dual vertices directly on the isosurface,

e a simple topological safety test that guarantees that we
still produce a manifold surface and maintain the topology
of the original shape after modifying the dual vertices to
reduce the polygon count.

Finally, though our description concentrates on 3D isosur-
faces, our method extends to arbitrary dimension.

2. Related Work

Early contouring algorithms like Marching Cubes (MC)
[LC87] sample F(p) over a regular grid that partitions space.
For each cube in the grid, MC determines the vertex posi-
tions using linear interpolation along its edges. The topol-
ogy of the surface is indexed from a table solely by the sign
configuration (inside/outside) of the corner samples. How-
ever, the sign configuration does not uniquely determine the
topology inside of a cell. This ambiguity can be overcome
by reconstructing the topology induced by trilinear inter-
polation [Nie03]. Marching Tetrahedra (MT) [DK91] also
removes topological ambiguities by uniformly partitioning
space with tetrahedra rather than cubes, which has the addi-
tional benefit of using a smaller table of sign configurations
than MC. Semi-regular grids of tetrahedra have also been
used to find surfaces for data where each sample is either
inside, outside, or unknown [Nie08, NL09].
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Figure 2: Two thin sheets contoured with DC and our
method (top), but our method uses a single cell whereas DC
uses 32 cells on a side. In the middle, the sampling reso-
lution and the partitions of space are shown. Our method
adapts its partitioning of the cell to reproduce the thin sheet
exactly. The bottom shows a view in between the two sheets
to illustrate the non-manifold geometry created by DC.

Although sampling over a regular grid is simple and pro-
duces good surfaces, uniform sampling is inefficient because
surfaces usually intersect only a small percentage of the cells
in a grid. Hierarchical spatial partitions adaptively sample
the function near the isosurface or use geometric criteria to
place fewer samples in flat regions of the isosurface. How-
ever, hierarchical representations pose an additional set of
challenges for isosurfacing methods as the interface between
adaptive cells must be handled to avoid cracks and other ar-
tifacts that may arise. The first step of creating an adaptive
partition of space was taken in early works [Blo88, MS91].
With a few exceptions, such as [MW97, GK04], researchers
use octrees to partition space. Some methods extend MC
to octrees through crack-patching between multi-resolution
cells [WKE99, VT01] or bending high-resolution vertices to
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adjacent, low-resolution contours [SFYC96]. Another tech-
nique [ZCK97] uses a ROAM-like [DWS*97] algorithm to
adaptively partition space into tetrahedra for isosurface ex-
traction. However, this partitioning method constrains the
tetrahedra’s vertices to lie at midpoints of edges and pro-
duces a balanced tree. In contrast, we place no such restric-
tions on our octree decomposition and the vertices of our
tetrahedra can move freely inside their cells to reproduce
sharp features of the underlying isosurface.

Many of these early techniques place restrictions on the
octree’s adaptivity, and patching strategies often result in vi-
sual artifacts. Recent methods extract smooth, manifold sur-
faces from unrestricted octrees. One method [SGMO04] cre-
ates crack-free tetrahedralizations by performing a Delaunay
tetrahedralization of the octree over which MT can be run.
More recently, an algorithm was developed [KKDHO7] that
ensures compatible contours across faces of octree cells us-
ing edge trees. In both of these methods, the vertices of the
cells that partition space (the vertices of the octree) are fixed
and surface vertices are constrained to edges of the parti-
tions. Without freedom to place partition vertices it is im-
possible to reconstruct thin and sharp features.

When additional information about the function other
than its value is available, it is possible to reproduce sharp
features that are otherwise impossible to resolve. One ap-
proach to capturing sharp features replaces the function with
a directional distance field [KBSS01]. However, most meth-
ods that reconstruct sharp features only assume knowledge
of the gradient, and several methods exist that find sharp fea-
tures in an adaptively sampled function. Dual Contouring
(DC) [JLSWO02,ZHK04] reproduces sharp features by plac-
ing surface vertices dual to octree cells. However, DC pro-
duces non-manifold, self-intersecting surfaces in ambiguous
sign configurations as shown in Figures 1 (left) and 2. DC
produces non-manifold topology because no more than one
surface vertex is generated for each grid cell, but multiple
sheets of surface may pass through a single grid cell and
will intersect at that surface vertex.

Extensions of DC generate either manifold topology
[SIWO7] or an intersection-free surface [Ju06], but neither
method produces surfaces that are both intersection-free and
manifold. Although the partition of space described in In-
tersection Free Contouring on an Octree Grid (IFC) [Ju06]
is similar to ours, IFC maintains the same topology as the
DC surface and, hence, produces non-manifold surfaces in
the same sign configurations that DC does, as shown in Fig-
ure 1. Volumetric data stored in KD-trees can also be con-
toured using an extension of DC [GKO04], but the method
has many of the same problems as DC. Cubical Marching
Squares (CMS) [HWC*05] generates surfaces with sharp
features from Hermite data sampled over an octree, but per-
forms complicated intersection of areas on faces and inter-
section of volumes in cells.

Thin features of a surface are pieces of the surface
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Figure 3: A mechanical part created through CSG opera-
tions is contoured using Dual Marching Cubes (DMC) and
our method. The top shows the surfaces without wireframe
where the dark areas are caused by non-convex cells that
generate folded-back, self-intersecting triangles. Below il-
lustrates a zoom-in of the triangulation to clearly show the
self-intersecting triangles.

that are smaller than the sampling density. In the special
case of a distance function, methods have been developed
to detect the existence of thin features to guide subdivi-
sion [VKKMO3, VKSM04] and thereby guarantee that the
topology of the isosurface is reproduced. However, it is pos-
sible to actually reconstruct features that are smaller than the
sampling resolution. Dual Marching Cubes (DMC) [SW04]
creates a partition of space that is dual to the octree grid.
DMC reproduces thin features by positioning vertices of the
dual grid at the features of F(p) (i.e. intersections between
smooth regions of F(p)). DMC then contours the dual par-
tition by applying the MC table to each partition cell. How-
ever, when reconstructing sharp features, DMC can gener-
ate self-intersecting surfaces because the dual grid may be
non-convex, as shown in Figure 1 (right) and Figure 3. In
contrast, our method uses an adaptive octree to generate a
tetrahedral partition that not only reproduces sharp features,
but also guarantees that tetrahedra cannot invert. Therefore,
our surfaces cannot self-intersect.

3. Partitioning Space

We make no assumptions about F(p) other than that the
function is piecewise smooth and continuous so that a gra-
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Figure 4: Space is recursively decomposed into simplices.
Starting from a single vertex in (a), we form a line segment
by adding an edge vertex in (b). We add a face vertex to the
line segment in (c) to form a triangle, from which we form a
tetrahedron by adding a cube vertex in (d).

dient is well-defined almost everywhere. Places where the
gradient is not defined are sharp features of the function. Our
method is related to DMC in that we partition F'(p) along its
features to improve our piecewise linear approximation. We
focus on accurately representing the function rather than the
isosurface because an accurate function estimate produces
an accurate isosurface from the resulting spatial partition.
Although our method easily extends to extracting manifolds
of co-dimension 1 from functions of arbitrary dimension, we
restrict our discussions to assuming F(p) is defined over R3
and that our isosurface is 2-manifold.

An octree is composed of cubes, faces, edges, and ver-
tices, which we refer to as 3-cells, 2-cells, 1-cells, and O-
cells respectively. Given an octree, we place vertices dual to
each minimal m-cell. A minimal m-cell is a cell of dimen-
sion m that does not contain any cells of dimension m as a
subset. For example, a minimal cube is a leaf in the octree
and a minimal face is the smaller of the two shared faces of
adjacent leaf cubes.

For each minimal m-cell, we create a dual vertex p =<
p,F(p)>c R* with p € R3 and constrain each vertex to lie
within its cell (e.g. vertices dual to 3-cells are constrained
to cubes, 2-cells to faces, 1-cells to edges, and 0-cells to the
position of the 0-cell vertex). Notice that, for O-cells, the po-
sition of the dual vertices coincides with vertices of the oc-
tree. For m-cells where m > 0 we enforce an additional con-
straint that vertices cannot lie on the boundary of their cell
to avoid degenerate tetrahedra and T-intersections in the re-
sulting isosurface. Hence we constrain these points to a cell
of size 1 — € of their containing cell.

We use dual vertices to define a partition of space over
which we extract the isosurface. Since dual vertices are free
to move within their cells, we use this freedom to position

Figure 5: Adaptive simplicial partitioning using minimal
cells. The highlighted triangle shows how dual vertices to
a 0-cell are connected to a 1-cell and finally to a 2-cell to
form triangles.

dual vertices such that linear interpolation between dual ver-
tices approximates F'(p) well and reproduces sharp features
that occur at the intersection of smooth pieces of the func-
tion. This strategy allows us to reproduce thin shapes with
far less subdivision than methods such as MC or DC where
function samples are restricted to the vertices of an octree.

To find sharp features in F(p) we observe some proper-
ties of the function. First, F(p) defines a four dimensional
surface. Because F(p) is piecewise smooth, F(p) can be lo-
cally approximated by tangent hyperplanes except at sharp
features. Second, sharp features occur at intersections of lo-
cally smooth regions of F(p), and we can approximate these
features using intersections of hyperplanes sampled locally
around the features. We therefore place dual vertices at sharp
features by minimizing their distance to the hyperplanes in
the neighborhood of the vertex.

For each m-cell, we sample the function F(p) at each oc-
tree vertex p; on the boundary of the cell as well as the nor-
mal 77; =<VF(p;),—1>. When m < 3, we restrict the gra-
dient to the cell by projecting VF (p;) onto the subspace de-
fined by the cell. Each of the pairs (p;,7;) forms a tangent
plane and we place the vertex ¥ dual to this cell at the posi-
tion that minimizes the squared distance to each plane

min Y (7 -~ ;- i) (1)

such that the spatial coordinates of X lie within its corre-
sponding cell (scaled by 1 — ¢€). Lindstrom et al. [LSO1] pro-
vides a simple method for minimizing such quadratics over
box constraints.

Unfortunately, the function value returned by minimiz-
ing Equation 1 is often a poor estimate of the actual func-
tion value in regions where F(p) has high curvature. De-
pending on if the function is locally convex or concave, the
estimated function values will be consistently high or low.
We have found that mixing consistently wrong function esti-
mates with the value of F(p) at vertices results in a dimpled
surface and that, at the cost of an extra function evaluation
off of the regular grid, using <x,F(x)> as the dual vertex
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Figure 6: Moving dual vertices to the isosurface improves the triangulation. Thick blue lines indicate the isosurface. Left to
right: (a) original placement of dual vertices, (b) finding an appropriate vertex with opposite sign, (c) placement of face vertex
on isosurface, (d) finding an end-point on the edge with opposite sign of edge vertex, and (e) placing edge vertices on isosurface.

gives better results than using . Notice that this step requires
evaluation of F(p) away from a regular grid. For some func-
tions (such as those produced by CSG operations), this re-
quirement is trivial. When such functions are not available,
this step can either be left out or an interpolant can be used
to extend the function F(p) between its samples at grid ver-
tices.

We can also measure the error of minimized vertices by
evaluating Equation 1. The error is larger in regions with
high curvature than in regions with low curvature, because
planes estimate nearly planar surfaces well and nonplanar
surfaces poorly.

4. Isosurfacing

Given an octree containing dual vertices as described in Sec-
tion 3, we provide a simple method for tetrahedralizing these
cells. Using these tetrahedra, we then apply Marching Tetra-
hedra [DK91] to extract an isosurface.

Our tetrahedralization proceeds recursively in terms of the
dimensionality of the dual vertices in the octree. We recur-
sively build an m-simplex (simplex of dimension 1) by con-
necting dual vertices of minimal ¢-cells where ¢ < m. The
base case is a O-simplex (a point) composed of the dual ver-
tex for a O-cell. Given a minimal i+1-cell with a dual vertex,
we connect this vertex to all of the i-simplices defined on
its boundary to build a set of i+1-simplices. Figure 4 shows
an example of this recursive process over uniform cells of
different dimensions. We start with every O-cell as its own
simplex. Edges are then created by adding edge-dual ver-
tices to each O-cell so that each edge is composed of two
line segments. Face-dual simplices are added to each adja-
cent line segment to form triangles in each face, and, finally,
cube-dual vertices are added to each triangle to form tetra-
hedra. Figure 5 shows how this process also works in the
adaptive case where dual vertices corresponding to minimal
cells are used to create the simplicial decomposition. Two
minimal edges are shared between the large square and the
smaller squares in the figure, which means that a total of four
line segments are formed on the right boundary of the large
square, which then form four triangles connecting the large
square to the smaller squares.

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.

As long as the dual vertices lie within their correspond-
ing cells, this process cannot produce any inverted tetrahe-
dra and creates a partition of space. This is because octree
decompositions are convex and each dual vertex lies within
the kernel (region of the cell visible by every point on its
boundary) of the cell. Moreover, none of the tetrahedra will
be degenerate since we constrain dual vertices so that they
cannot lie on the boundary of their cell (dual vertices are
constrained to lie in cells of size 1 — € times the original
cell size). Also, as long as no samples are zero, the polygons
produced by MT will be contained solely by the tetrahedra
that generate them. Since our decomposition is one-to-one,
our surface cannot intersect itself. Each edge in our surface
will also be contained by exactly two polygons since tetra-
hedra share a common triangle face with adjacent tetrahe-
dra. Finally, since vertices of the isosurface cannot lie at the
end-points of the edges of the tetrahedra, our isosurface is
guaranteed to be manifold and intersection-free.

4.1. Triangulation Improvement

As we have described the algorithms so far, the surface that
is generated will approximate contours well. However, like
MT, our isosurfaces contain numerous small, sliver triangles
when vertices of the tetrahedra pass close to the isosurface.
We can improve the triangulation using a method similar to
Hall et al. [HW90] by placing the vertices that are dual to
each cell directly on the isosurface. Triangles that become
degenerate from this operation are then removed. Figure 9
shows an example of this process where many of the unde-
sirable triangles are removed.

Our strategy is to move the dual vertices of each m-cell
to the isosurface while keeping the dual vertex contained
within its m-cell. Notice that we cannot use the value at the
dual vertices to indicate how close the vertex is to the iso-
surface, nor does the magnitude of the gradient provide this
information, because we have not placed any restrictions on
the function F(p). Furthermore, we want to preserve sharp
features in the object when moving the dual vertices.

When moving dual vertices onto the surface, we want to
maintain the accuracy of our approximation of the function.
In the original partition of each cell, the dual vertex was
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Figure 7: Moving dual vertices onto the isosurface may
change the topology for cells that do not contain a single
sheet. Thick blue lines indicate the isosurface. (a) shows the
original topology that is altered by moving an edge sample
to the isosurface in (b). The original topology in (c) is also
altered by moving the face sample to the isosurface in (d).

placed to minimize the squared distance to a set of local
planes. We must find a direction to move the dual vertex in
that introduces the least error and guarantees that we can
move the dual vertex to the surface. To do so, we evaluate
the error at each dual vertex in the boundary with opposite
sign using Equation 1 and choose to move in the direction of
the vertex that has the smallest error. We then perform a bi-
section algorithm between the dual vertex and the boundary
vertex to compute the new position of the dual vertex x such
that F(x) = 0 and x lies on the isosurface. For each m-cell,
triangulation improvement depends only on vertices dual to
i-cells where i < m. Hence, we proceed from higher dimen-
sional cells to lower dimensional cells so that each vertex
can be processed independently. This process is shown in
Figure 6.

Notice that we must be careful when moving dual vertices
as we may change the topology of the surface in some cells,
which could result in non-manifold topology since we now
allow zero isovalues. Figure 7 demonstrates this problem.
Parts (a) and (b) show how moving a vertex dual to an edge
can result in non-manifold geometry without a topological
test. Parts (c) and (d) illustrate a similar problem with a ver-
tex dual to a face that creates non-manifold geometry.

We provide a test that preserves the topology of the iso-
surface within each m-cell by detecting if the portion of the
isosurface intersecting the m-cell is a topological disk and

Py
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Figure 8: Top: a multiresolution face (left) whose connec-
tivity graph is shown (right) that fails the topological safety
test. Bottom: a 3D cube (left) whose connectivity graph is
shown (right) that passes the topological safety test.

restricting vertex movement if the test fails. We reduce our
topological safety test to counting connected components in
a graph. Given an m-cell, we build a graph consisting of all
of the edges of the simplices on the boundary of the cell that
connect all dual vertices of dimension i < m.

Note that some cells in the octree form graphs that have
special forms for which we can calculate connected compo-
nents easily. For an edge, there are only two vertices on its
boundary, so we simply test that the vertices have opposite
sign. The graph formed by a face will be a ring with an even
number of sign changes between vertices, because for any
transition from negative to positive there must be a transi-
tion back. For faces, we can therefore check that there are
exactly two sign changes along its boundary. For a cube, we
use the Union-Find algorithm, which is a simple algorithm
that takes nearly linear time to find connected components
in a graph. Figure 8 shows this reduction applied to a mul-
tiresolution face and a cube.

Our topology test is exact in that we preserve the topology
of the surface if and only if the test is satisfied. Assume that
the topology test is satisfied. This means the boundary of the
cell forms two disjoint vertex sets of inside/outside vertices
and the boundary is a connected sheet. Since the dual vertex
of the m-cell is connected to all of the dual vertices on the
boundary, the value and position of the vertex are irrelevant
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(a) Original

(b) Improved triangulation

Figure 9: Our method for improving surface triangulation
reduces the number of triangles from 44192 on the left to
14720 on the right.

as the contour through the cell is still a topological disk (the
boundary is completely connected as a single sheet).

The converse statement is also true. Suppose we give a
vertex, x, that is dual to an m-cell a value of zero by placing
it on the isosurface. Then any portions of the contour on the
boundary of the cell will form a sheet that passes through x,
because x is connected to all of the vertices on the boundary
of the cell. Since each sheet touches x, the sheets all touch
each other and create a single surface. Placing the central
dual vertex on the isosurface pinches the surface to a point
and creates a non-manifold vertex when portions of the con-
tour are not connected before moving the dual vertex. Even if
the boundary does not contain any of the isosurface (all ver-
tices have the same sign), the test still works, since placing
the central dual vertex on the isosurface collapses a topolog-
ical sphere to a point or creates an isolated point.

5. Implementation

The tetrahedralization in Section 4 requires that the minimal
edges and minimal faces are enumerated to build the tetra-
hedra we use to generate the isosurface. Our implementation
uses the recursive octree traversal of DC [JLSWO02] to find
the leaves in the octree that surround a minimal edge in the
tree. Of the (up to) four cubes surrounding a minimal edge,
the cube at the deepest depth will contain the minimal edge
of the tree. This minimal edge creates two line segments cor-
responding to the octree vertices of the minimal edge and its
dual vertex. Next, for each pair of face-adjacent cubes sur-
rounding the minimal edge, we connect these two line seg-
ments to the vertex dual to the minimal face between these
pairs of cubes to create two triangles for each minimal face.
Finally, we connect each of these triangles to the vertex dual
to the cube they are adjacent to, forming four tetrahedra for
each face-adjacent cube. Our algorithm requires no auxiliary
data structures beyond the octree itself and the dual vertices
to efficiently construct our tetrahedralization for any octree.
We then use a table-based method based on the sign config-
uration of each tetrahedron to contour the cell [DK91].

5.1. Octree Generation
While our method operates on arbitrary octrees, we provide

a simple method to create an octree that conforms well to the
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Figure 10: An M1 Abrams tank reconstructed at depth 8 by
our method is shown. Notice that high resolution details like
the antenna are found correctly.

isosurface using the error metric from Section 3. There are
two classes of approaches to generating an octree for isosur-
face calculation. A bottom-up approach samples the function
uniformly in a full octree and then prunes cells that do not
contain a contour. In many applications, the function we con-
tour is expensive to evaluate, which makes simple bottom-up
octree calculation infeasible.

Therefore, we use a top-down contour-finding approach
that adds cells to the tree by refining the sampling around
detected contours. To begin, we use a uniform refinement
down to a prescribed level to capture the coarse features of
the function. Then, we analyze F(p) at the dual vertices of
each cube. We refine each cube that the dual vertices indicate
the contour intersects until the sum of the errors from Equa-
tion 1 for each dual vertex in a cube is below a set threshold
down to a prescribed maximum depth.

While this strategy does not detect all of the possible
pieces of the isosurface, we note that this goal is impossible
without further knowledge of the function F(p). However,
beginning with a uniform sampling does guarantee that we
detect all features greater than the size of a cube in the uni-
form grid. These features, as well as any additional features
detected during refinement, will be refined to the level of ac-
curacy specified by the user. We use an error criterion simply
to avoid refinement in regions of the function that are well
approximated by a linear function such as flat regions of the
isosurface. However, any octree generation method can be
used with our technique.

6. Results

Our algorithm allows us to extract a manifold surface from
arbitrary octrees and all of the examples in this paper were
generated using octree decompositions. Figures 3 and 9 were
generated with the octree generation method in Section 5.1;
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Figure 11: The armadillo man cut in half by a CSG plane
and reconstructed by our method. The adaptive nature of the
surface is evident in the flat region.

Armadillo man | Mech. part | Lens

Depth 8 9 10
Ours 2.58s 4.81s 9.72s
Ours improv. 2.69s 6.80s 10.35s
DMC 1.85s 3.54s 6.42s
DC 1.35s 2.97s 5.99s

Table 1: Times taken by our method with and without trian-
gulation improvement, DMC, and DC for a variety of mod-
els. Each method uses the same octree sampling density. The
armadillo man is shown cut in halfin Figure 11, the mechan-
ical part is shown in Figure 3, and the lens is defined by CSG
intersection of two spheres.

the octrees of Figures 10 and 11, however, were calculated
from the signed distance function of a polygonal surface and
refined only where polygons intersect the octree cells.

We can generate manifold surfaces over arbitrary octrees
because our algorithm combines the strengths of primal and
dual contouring methods. The primal octree grid ensures that
cells are convex and that the contoured surface cannot self-
intersect. The dual structure of the octree provides a topol-
ogy for transitions between neighboring cells at different res-
olutions, and only constrains positions of points to remain in
the cell that they are dual to. We use the extra degrees of
freedom in placing vertices to find better approximations of
the function being contoured so that we can recover sharp
features. By forming a piecewise linear approximation of
the function, we are also able to recover sharp features in
the function itself that result in surface features that may be
smaller than the grid resolution.

Given the same octree, our method essentially samples the
function at one higher resolution than DC or DMC because
of the extra samples on edges, faces, and cells in the octree.

Ours | Ours improv. | DMC DC
Time total 8.78s 8.19s 5.29s 3.78s
Time tree 4.02s 6.13s 3.41s 2.69s
Time extract | 4.77s 2.06s 1.88s 1.09s
Triangles 3.63M 1.13M 1.16M | 727k

Table 2: Details are given for each method when calculat-
ing the surface of the tank shown in Figure 10. We refine
the octree to depth 9 for DC and DMC, and to depth 8 for
our method so that sampling densities are equal. Notice that
our times are about twice as long as DMC and number of
triangles are comparable to DMC.

To make the comparison between methods fair, we calcu-
late the surface in our method at a lower resolution than DC
and DMC. Running times for our method, DC, and DMC
are shown in Table 1 for a variety of functions. The fastest
method is DC, because it minimizes three dimensional er-
ror functions to position surface vertices at sharp features,
whereas DMC and our method minimize four dimensional
error functions to position dual vertices with function val-
ues. DMC is approximately 10-20% slower than DC, and
our method takes an additional 50% longer than DMC.

Table 2 shows a breakdown of the times for each method
when reconstructing the tank shown in Figure 10. Although
the octree for the tank was refined only around the surface,
the antenna is of higher resolution than the sampling grid.
DC only samples near the isosurface and is unable to detect
small details like the antenna and railings of the tank. Our
method and DMC, on the other hand, form a grid dual to
the octree structure and detect the antenna of the tank even
at depth 6. However, DMC produces several flaps of sur-
face that fold back on themselves in the tank, whereas our
method avoids such self-intersections. Contouring methods
that partition space into tetrahedra are notorious for generat-
ing many triangles, but with triangulation improvement, our
method generates fewer triangles than DMC does.

We focus our discussion on three dimensional isosurfaces,
but our method extends to contouring functions of any di-
mension. Our method’s construction and proofs of correct-
ness are inductive, which means that we can apply our algo-
rithm to higher dimensions. By contrast, a direct extension
of MC to higher dimensions is complicated by the MC table.
The MC table is difficult to compute, and has 22" entries for
dimension m, whereas the simplex table used in our method
is easy to compute and is size 2!, These higher dimen-
sional isosurfaces may be useful for time-dependent simula-
tions, surface reconstruction of moving objects, or robotics
for path planning.

7. Future Work

We want to further improve the triangle quality in the sur-
face generated by our method. Moving dual vertices to lie
directly on the isosurface greatly improves the triangulation
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of isosurfaces, but some small and poor aspect ratio trian-
gles still remain. These triangles are generated near 0-cell
vertices that the isosurface passes close to because 0-cell
vertices cannot move to ensure convexity of all d-cells in
the octree. One possibility we would like to investigate is
allowing O-cell vertices to move. So long as we can ensure
that higher-dimensional dual vertices remain in the kernel of
their cell, our tiling of space is guaranteed to be convex and
the surface will be manifold.

We would also like to improve octree generation. Cur-
rently, we use an error metric that is zero in flat regions and
positive in curved regions of the function, but we do not di-
rectly measure the curvature of the surface. For example,
F(p) = p)zc — 1 has a completely planar isosurface, but our
current refinement criteria detects that the function is curved
near the contour and refines the octree more than necessary.
By more accurately determining the curvature of the sur-
face, it will be possible to generate accurate surfaces with
fewer triangles and using less memory. Alternatively, it may
be possible to design a back-tracking algorithm that uses the
samples generated during expansion to collapse parts of the
tree that have been refined too far.
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