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Abstract

We present a streaming method for reconstructing surfaces from large data sets generated by a laser range scanner

using wavelets. Wavelets provide a localized, multiresolution representation of functions and this makes them ideal

candidates for streaming surface reconstruction algorithms. We show how wavelets can be used to reconstruct the

indicator function of a shape from a cloud of points with associated normals. Our method proceeds in several

steps. We first compute a low-resolution approximation of the indicator function using an octree followed by

a second pass that incrementally adds fine resolution details. The indicator function is then smoothed using a

modified octree convolution step and contoured to produce the final surface. Due to the local, multiresolution

nature of wavelets, our approach results in an algorithm over 10 times faster than previous methods and can

process extremely large data sets in the order of several hundred million points in only an hour.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

Creating digital models of real-world objects has a number
of applications ranging from industry, where digital mod-
els of real objects are used to perform a physical simulation
or to visualize a shape in a way not possible in real life, to
entertainment where digitized clay models are animated for
games or movies, to archeology and art, where these tech-
niques are used to create digital repositories of artistic works
(as done in the Digital Michelangelo Project [LPC∗00]).
Typically, the shape is acquired using a laser range scan-
ning device such as the Cyberware Large Statue Scanner,
which provides point samples from the surface of the object.
The point samples are then used to build a three dimensional
polygon model that approximates the shape of the object be-
ing scanned.

Reconstructing surfaces from the data produced by these
scanning devices can be inherently difficult. The surface may
be oversampled in some regions due to multiple, overlap-
ping scans, typically taken in the attempt to cover the en-
tire shape. On the other hand, cracks and crevices usually
cannot be scanned and physical size limitations may prevent
the scanner from scanning every portion of the shape, so the
data may contain gaps and holes. Furthermore, with the ad-
vent of faster processors and cheaper storage, the amount
of collected data has grown dramatically. For example, for

large statues such as Michelangelo’s David standing at 14
feet tall, the number of samples can easily be in the hundreds
of millions to billions of points. Such large amounts of data
necessitate efficient algorithms, both in terms of time and
memory, to process the collected samples in a reasonable
amount of time. In addition, real world data always contains
noise due to sensor inaccuracies, which calls for robust and
reliable techniques for handling this problem.

Recently, implicit methods, such as the level set meth-
ods pioneered by Osher [OF02] and Sethian [Set99], have
gained popularity as techniques for surface reconstruction.
They rely on the idea that it is much easier to work with
a shape through its level set function than with the shape
directly. This is because one can perform computations on
levels sets of the function (i.e. surfaces) on a fixed Carte-
sian grid without having to parameterize the surfaces. On
the other hand, in the last two decades, wavelets and other
multiscale representations have had an enormous impact on
image and signal processing, mainly due to their hierarchi-
cal structure and localization properties. The objective of
this paper is to fuse these two techniques and create a fast,
robust streaming algorithm for surface reconstruction from
point cloud data.

Contributions

We present a fast, simple and efficient method that
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combines the advantages of implicit methods and the mul-
tiscale structure of the wavelet/subdivision based methods
to automatically reconstruct a surface from an unorganized
oriented cloud of points. We use point samples from the sur-
face of a solid M ⊂ R

3 to reconstruct the indicator function
χM of M, whose appropriate level set is an approximation to
the solid M.

Our method is based on selecting the right basis to rep-
resent the function χM . Instead of using globally supported
functions (for example the Fourier basis), we resort to a ba-
sis that consists of a hierarchy of compactly supported basis
functions. Thus, each sample point only influences a small
number of coefficients in the representation of χM , leading
to a computationally efficient algorithm many times faster
than previous techniques. Our method is very general in the
sense that we can use any orthogonal or biorthogonal com-
pactly supported wavelet basis. The choice of basis depends
on the particular application in mind and is dictated by the
user’s desire for quality/smoothness of the reconstructed sur-
face versus the speed of reconstruction. In some applications
quality of the reconstructed surface is more important than
the speed of the reconstruction. In others, such as the navi-
gation of unmanned vehicles, reconstruction speed is more
imperative than quality. Our technique provides a general
framework for handling any of these applications simply by
selecting the appropriate wavelet basis. Smoother wavelets
will provide smoother surfaces but require more computa-
tion. As the support of the wavelet decreases so does the
smoothness of the wavelet and, hence, the smoothness of the
reconstructed surface. However, smaller support leads to a
more computationally efficient algorithm.

We also utilize the hierarchical structure of the wavelet
basis to develop a streaming implementation, where we keep
only an octree of some small depth dm in memory and en-
code subtrees corresponding to high-resolution details in a
streaming fashion. This streaming technique allows the con-
sumer to process massive data sets with complexity exceed-
ing the available computer memory.

2. Previous Work

The problem of surface reconstruction has been well stud-
ied in the last few decades and we cannot possibly cover all
contributions. Here, we discuss only some of the existing
methods and refer the reader to [SS05] for a brief survey on
some recent developments in this field or to [KBH06] where
an excellent comparison of many reconstruction techniques
is provided.

Surface reconstruction techniques fall into two main cate-
gories: explicit and implicit methods. Explicit methods are
typically triangulation-based techniques. The Power Crust
algorithm [ACK01], Robust Cocone [DG06] and Super Co-
cone [DGH01] are among the well-known examples of such
methods. Streaming triangulation algorithms for surface re-
construction [BMR∗99, ACA07] have also been developed

in the pursuit of handling large data sets. However, since
these algorithms interpolate the input data, they do not per-
form well in the presence of noise. Furthermore, they typ-
ically need neighboring information to create the triangu-
lations, which makes them many times slower than most
implicit methods and thus unsuitable for reconstructing ex-
tremely large data sets.

Implicit algorithms reconstruct a surface using a level-set
of a function. In this case parametrization is not necessary
and operations such as shape blending, offsets, deformations
and others are simple to perform. Also, these methods typ-
ically approximate the input data and, hence, are more ro-
bust to noise in the input data than many triangulation-based
techniques.

One approach utilizing this technique is based on Radial
basis functions (RBF) [CBC∗01]. However, fitting and eval-
uation of RBFs on large data sets is quite slow and, therefore,
it is difficult to use this technique to reconstruct implicit sur-
faces from large point sets consisting of more than several
thousands of points.

Another well known implicit method is the MPU Im-
plicits [OBA∗03]. This technique is an octree subdivision
method that locally fits piecewise quadratic functions to
the data and uses weighting functions (partitions of unity)
to blend these functions together. Similar to the FastRBF
method, MPU Implicits can produce noisy surfaces with ex-
traneous parts. However, MPU Implicits is simple and very
fast.

Other implicit methods are the method of Hoppe et
al. [HDD∗92] and VRIP [CL96]. They are more robust with
respect to noise than many other algorithms. While slower
than MPU Implicits, both methods are still quite fast. Note
that, despite run-length encoding tricks used in VRIP, both
methods have difficulty processing extremely large data sets
due to the requirement that the representation of the implicit
function resides in memory.

More recently, an implicit surface reconstruction method
based on Fourier series was developed in [Kaz05]. This
method has the advantage that the reconstructed surface is
smooth and the method robustly handles noise and gaps in
the data. However, computing a single Fourier coefficient
requires a summation over all input samples since the ba-
sis functions are globally supported. The method also re-
quires huge amount of memory due to the use of uniform
grid, which limits its application to relatively modest size
data sets. A solution to this problem was recently proposed
in [SBS07], where the authors suggest combining the ap-
proach in [Kaz05] with adaptive subdivision and partition of
unity blending techniques in [OBA∗03].

The FFT approach, developed in [Kaz05], was later mod-
ified in [KBH06]. The modification utilizes an octree and
finds the implicit function by solving a Poisson equation.
In [BKBH07], the method is further enhanced by using a
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Figure 1: Surface reconstruction of “Barbuto” from laser range scans containing at total of 329 million points (7.34GB of

data). Our wavelet surface reconstruction method completed the reconstruction in 112 minutes with 329MB of memory.

streaming approach, which allows the algorithm to handle
truly massive data sets on the order of hundreds of millions
of point samples. However, despite its speed, processing can
still take days to even weeks for large number of points.

3. Wavelets for Surface Reconstruction

Wavelets provide an alternative to classical Fourier meth-
ods for one- and multi-dimensional data analysis and synthe-
sis, and have numerous applications both within mathemat-
ics and in areas as diverse as physics, seismology, medical
imaging, digital image processing, signal processing, com-
puter graphics and video. The main appeal of wavelets stems
from their simultaneous localization in both frequency (wave
number) and spatial (position) domains. These properties al-
low many classes of functions to be approximated by a rela-
tively small number of wavelet basis functions while keeping
most of their information content.

In our method, we use the input points pi on the surface
∂M and their outward normals~ni to construct an approxima-
tion to the indicator function χ̃M of the solid M with bound-
ary ∂M. The indicator function is defined to be 1 inside M

and 0 otherwise,

χM(x) =

{
1, x ∈ M,
0, elsewhere.

We construct the approximation χ̃M by approximating the
wavelet coefficients of χM . Then, the surface ∂M̃ of a level
set M̃ of χ̃M is an approximation to the original surface.

3.1. Wavelet Representation

First, we briefly review some properties of wavelets nec-
essary for our construction. Similar properties hold for
biorthogonal wavelets.

Let ϕ be a compactly supported univariate scaling func-
tion with orthogonal shifts which satisfies the two-scale re-
lation

ϕ(t) = ∑
`∈Z

α`ϕ(2t − `), (1)

where only finite number of coefficients α` are nonzero. Let
ψ be the univariate wavelet function with compact support
which is obtained from ϕ by multiresolution. The formula
for ψ is

ψ(t) = ∑
`∈Z

(−1)`α1−`ϕ(2t − `), (2)

where α1−` denotes the complex conjugate of α1−`. Exam-
ples of such wavelets and scaling functions were given by
Daubechies [Dau92]. We use standard construction of three
dimensional wavelet bases. We shall use the notation ψ0 = ϕ
and ψ1 = ψ. Let E′ denote the set of vertices of the cube
[0,1]3 and let E denote the set of vertices excluding the ori-
gin (i.e. E = E′ \ (0,0,0)). For each e = (e1,e2,e3) ∈ E′,
j ∈ N and k = (k1,k2,k3), we define

ψe
j,k(x) = 23 j/2ψe1(2 j

x1−k1)ψ
e2(2 j

x2−k2)ψ
e3(2 j

x3−k3)

where x = (x1,x2,x3). Each function f that is locally inte-
grable on R

3 has the wavelet expansion

f (x) = ∑
k∈Z3

c
(0,0,0)
0,k ψ

(0,0,0)
j,k (x)+ ∑

j∈N

∑
k∈Z3

∑
e∈E

c
e
j,kψe

j,k(x),

(3)
where each ce

j,k is given by

c
e
j,k =

∫

R3
f (x)ψe

j,k(x)dx.

Here, the index k denotes the spatial index of the 3D cell at
resolution j. The index e is called the gender of the wavelet

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



J. Manson, G. Petrova & S. Schaefer / Surface Reconstruction Using Wavelets

and indicates which type of the 8 tensor product basis func-
tions is being used.

3.2. Building the Indicator Function

In the case of surface reconstruction, the function f is the
indicator function χM of the solid M. Without loss of gen-
erality, we may assume that M lies in the cube [0,1)3. The

coefficients c
(0,0,0)
0,k and ce

j,k in the wavelet representation of
χM are determined by

c
e
j,k =

∫

R3
χM(x)ψe

j,k(x)dx

= 23 j/2
∫

M
ψe1(2 j

x1 − k1)ψ
e2 (2 j

x2 − k2)ψ
e3(2 j

x3 − k3)dx.

Notice that, unlike standard wavelet applications in image
processing, we do not have samples of χM from the interior
of M, but only from its boundary. Therefore it is not obvi-
ous how to use wavelets to construct an approximation to
the unknown function χM . In [Kaz05] Kazhdan observed in
the context of computing the Fourier coefficients of χM that
integrals of this form can be represented as surface integrals
using the Divergence Theorem

∫

M
∇·~F(x)dx =

∫

p∈∂M

~F(p) ·~n(p)dσ, (4)

where ~F = (F1,F2,F3) is a vector valued function on R
3,

~n(p) is the outward unit normal to the surface ∂M at point p

and dσ is the differential surface area of ∂M. To apply this

theorem to compute each of the coefficients ce
j,k and c

(0,0,0)
0,k ,

we must construct vector valued functions ~F e
j,k, e ∈ E, and

~F
(0,0,0)

0,k that satisfy

∇·~Fe
j,k(x) = ψe1(2 j

x1 − k1)ψ
e2(2 j

x2 − k2)ψ
e3(2 j

x3 − k3).
(5)

Given such a function ~Fe
j,k satisfying (5), we can discretize

(4) over the point samples (pi,~ni)

c
e
j,k ≈ 23 j/2 ∑

i

~F e
j,k(pi) ·~nidσi, (6)

where dσi is an estimate of the differential surface area as-
sociated with the sample point pi.

There are many choices of functions ~Fe
j,k that satisfy (5);

however, many will not have compact support even if the
associated wavelet basis does. This lack of locality will ruin
any effeciency gains we obtained from using compactly sup-
ported (biorthogonal) wavelets as the computation of each
coefficient ce

j,k will be influenced by all points pi on the sur-

face. We present a construction of functions ~Fe
j,k, which can

be found in the Appendix, that creates compactly supported
~Fe

j,k, e ∈ E, for any compactly supported (bi)orthogonal

wavelet basis. Furthermore, the functions in ~Fe
j,k, e ∈ E will

have the same support as the underlying wavelet basis.

Therefore, (6) can be written as

c
e
j,k ≈ 23 j/2 ∑

pi∈∂M∩supp ψe
j,k

~F e
j,k(pi) ·~nidσi

where suppψe
j,k denotes the support of ψe

j,k. Notice that
as opposed to globally supported bases like the Fourier ba-
sis, this summation does not involve all point samples, but
only those that belong to the support of ψe

j,k. The only co-
efficients that involve summation over all points pi are the

c
(0,0,0)
0,k . In this case, we only need to compute those co-

efficients c
(0,0,0)
0,k that correspond to basis functions ϕ(x1 −

k1)ϕ(x2 − k2)ϕ(x3 − k3) whose support overlaps the region
of interest [0,1)3 containing M. Fortunately, this is a small,
constant number of coefficients that depends on the support
of the scaling function ϕ.

Finally, the computation of the coefficients in (6) requires
an evaluation of dσi, associated with the point pi. There
are many ways of estimating dσi and [Kaz05] provides one
such method based on Gaussian weighting. We use a sim-
ple, octree-based method to compute dσi that handles non-
uniformly sampled data points. We refine all octree cells
containing sample points until we reach some maximum
depth dmax specified by the user. Once all points are inserted
into the octree, we prune leaves of this tree until every leaf
is adjacent to at least 3 octree cells of the same depth that
also contain sample points. Our cutoff of exactly 3 adjacent
cells is not arbitrary since it guarantees the minimum num-
ber of cells necessary to form a connected piece of surface (a
tetrahedron). Then the value of dσi, associated with a point
pi inside a leaf from the octree is given by dσi = 2−2di/m,
where m is the total number of points in this leaf and di is
the depth of the leaf. This quantity is exactly the area of the
side of the leaf divided by the number of points in that leaf.

The computation of dσi creates an octree in whose cells
we store not only the number of points inside the cell, but
also the wavelet coefficients that are indexed by this cell. The
cells of the octree at each level j and position k ∈ R

3 store
the non-zero coefficients ce

j,k for all e ∈ E. Note that we may

require octree cells outside of [0,1)3 to store coefficients ce
j,k

of ψe
j,k whose support overlaps the sample points.

4. Surface Extraction

As described in Section 3.1, we compute an approximation
χ̃M to χM , and recover a solid M̃ that is a level-set of the
χ̃M. Since χ̃M ≈ χM , which is 0 outside M and 1 inside of
M, extracting the solid at level 1

2 is a reasonable choice. For
poorly scanned surfaces or point sets with high amounts of
noise, we can choose a data-dependent iso-value using the
average value of χ̃M over the sample points.

4.1. Polygon Generation

The ability of wavelets to detect discontinuities naturally
creates an adaptive refinement of the octree near the bound-
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Figure 2: Surface reconstruction using Haar wavelets (left)

results in a noisy surface because the basis functions are

discontinuous. Smoothing the indicator function results in a

substantially smoother surface at a small cost to speed and

approximation quality (right).

ary ∂M of M. We use this octree to construct a polygonal
model of the boundary ∂M̃ by applying the octree contouring
method from [SW04]. This algorithm computes the dual cell
structure of the octree through a recursive octree walk. The
method uses the values of χ̃M at the vertices of the dual cells,
located at the centers of the corresponding octree cells. We
then run Marching Cubes [LC87] on the dual cells to cre-
ate a water-tight, adaptive contour, which is guaranteed to
produce a topological and geometrical manifold. Since the
number of dual cells is proportional to the size of the octree,
the running time of this contouring method is also propor-
tional to the size of the octree.

4.2. Post-processing of the Indicator Function

The smoothness of the (biorthogonal) wavelet used will im-
pact the smoothness of χ̃M and, therefore, the smoothness
of the level set M̃. Wavelets with small support yield higher
performance algorithms because fewer wavelet coefficients
in (6) need to be calculated and each coefficient is influenced
by a smaller number of sample points. However, smaller sup-
port negatively impacts the quality of the resulting surface.
Instead of increasing the support of the wavelet to improve
the quality of the reconstructed surface, one alternative is to
perform a post-processing smoothing step on the indicator
function χ̃M. With this method, we can retain the time effi-
ciency associated with wavelets of small support and achieve
a more visually appealing surface. We have compared the
Hausdorff error obtained by this method with the error pro-
duced by other techniques. The results are summarized in
Table 3 and show that our method, with and without post-
processing, outperforms other techniques in terms of accu-
racy.

Smoothing a function is typically performed by convolv-

Figure 3: Depiction of our streaming implementation. We

first construct the wavelet coefficients of the indicator func-

tion, smooth the function and then extract the iso-surface.

ing the function with a small smoothing kernel over a uni-
form grid. However, for the large data sets that we target,
convolution over uniform grids is too expensive. Therefore,
prior to polygon generation, we perform an approximate
smoothing pass, modified to operate over octrees, whose
complexity is proportional to the size of the octree. We use a
small convolution mask that only involves adjacent cells and
is the tensor product of the mask ( 1

4 , 1
2 , 1

4 ) in R
3.

We smooth the function χ̃M , given by (3), where the sum-
mation over the dyadic levels j is up to a user specified depth
dmax. Given a cell at depth d, we compute the value of χ̃M

at the center of the cell and its 26 neighbors at the same
level using (3) by summing up to depth d. If a neighbor does
not exist, then the wavelets indexed by this neighbor do not
contribute to the sum. We then perform uniform convolution
over this locally uniform grid and we treat the obtained value
as the value of the smoothened function at the center of that
cell. Figure 2 shows an example of a surface reconstructed
using Haar wavelets (see Section 5) without (left) and with
(right) this smoothing step.

4.3. Streaming Implementation

The storage space for χ̃M is proportional to the surface area
of the reconstructed surface because refinement is only per-
formed near point samples. However, extremely large data
sets may require more space than can fit into the memory of
most desktop machines. To combat this effect, we develop
a streaming version of our algorithm. Like most streaming
algorithms, we require that the input points are sorted in one
of the Euclidean directions. If the points are not sorted, we
preprocess them by sorting along the longest Euclidean di-
rection of their bounding box using an out-of-core merge
sort. We assume, without loss of generality, that the sort is in
the z-direction. For a data size of about 205 million points,
the sort takes 20 minutes and the sorting time is negligible
compared to the time for surface reconstruction.

Our streaming algorithm builds a low resolution, in-core
approximation of χM down to some depth dm < dmax, where
dmax is the maximal depth of the octree and encodes subtrees
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corresponding to high-resolution details in a streaming fash-

ion. Note that the coefficients c
(0,0,0)
0,k depend on all sample

points and, therefore, χ̃M cannot be evaluated until all points
are processed at least once. Our solution is to perform two
passes over the data. The first pass constructs all coefficients
down to depth dm. The second, streaming pass builds the
non-zero wavelet coefficients ce

j,k of χ̃M for dm < j ≤ dmax

and `2−dm ≤ k3 < (` + 1)2−dm for 0 ≤ ` < 2dm . For each
slice `, we build the corresponding wavelet coefficients by
inserting points into the octree and refining the tree only
where (6) creates non-zero coefficients ce

j,k. We then smooth
the function values and create polygons before deleting the
subtrees corresponding to the slice from memory. Figure 3
depicts this streaming process.

Any choice of dm will work with our streaming algorithm,
but its value will affect the amount of memory required to
reconstruct the surface. Obviously, choosing dm = 0 or dmax

requires the entire tree to fit into memory. Assume we have
L leaves of the octree at depth dmax. Since the size of the
octree at each level is proportional to the surface area of ∂M,
the number of cells at depth j is approximately L4−(dmax− j).
Therefore, our streaming algorithm stores approximately

dm

∑
j=0

L

4dmax− j
+

β

2dm

d

∑
j=dm+1

L

4dmax− j

cells in memory at any one time because we keep β slices
in memory for the different stages of our algorithm, where
β is dependent on the support of the wavelet used. For the
Daubechies wavelets we consider in Section 5, β = 4. Min-
imizing this sum with respect to dm yields an optimal value
of dm ≈ .69dmax. While this technique does not allow us to
process arbitrarily deep octrees (the octree to depth dm must
still be stored), it does allow us to process much deeper trees
than a strictly in-core algorithm. We have been able to recon-
struct surfaces down to depth 14 in memory (see Section 6).
At that resolution, a single cross-section of the grid at the
maximal depth has over 250 million cells and allows us to
process the largest data sets that we could obtain.

5. Implementation

In the applications we are interested, computational time is
of major concern, which motivates us to explore wavelets
with small support such as the Haar and D4 Daubechies
wavelets. Despite the lack of smoothness of these wavelets,
the reconstructed surface is of good quality and is a good
approximation to the original surface (see Section 6).

The Haar wavelet is given by the formula

ψ(t) =

{
1, 0 ≤ t < 1/2,
−1, 1/2 ≤ t < 1,

and its corresponding scaling function ϕ is

ϕ(t) =

{
1, 0 ≤ t < 1,
0, elsewhere.

The Daubechies D4 wavelet is determined by (1), where the
coefficients come from the scaling relationship

ϕ(t) =
(

1+
√

3
4

3+
√

3
4

3−
√

3
4

1−
√

3
4

)



ϕ(2t)
ϕ(2t − 1)
ϕ(2t − 2)
ϕ(2t − 3)


 .

Figure 4 depicts plots of both the scaling function and D4
wavelet.

1 2 3

-1

1

1 2 3

-1

1

1 2 3

-1

1

1 2 3

-1

1

Figure 4: The D4 scaling function ϕ (left) and the corre-

sponding wavelet ψ (right).

Given that the D4 wavelet ψ has no analytical represen-
tation, we evaluate the functions ~Fe

j,k (see the Appendix) at
the sample points pi using a piecewise linear interpolant of
ϕ, ψ, Φ and Ψ based on the exact values of these functions
on a uniform grid. The exact values on uniform grid are
found using standard techniques of evaluation of functions
that satisfy a scaling relationship with finite number of non-
zero scaling coefficients, see for example [DM93, BCU00].
Note that the functions Φ and Ψ are in this category as well.
For example, Φ satisfies the scaling relation

Φ(t) =
(

1+
√

3
8

3+
√

3
8

3−
√

3
8

1−
√

3
8

)



Φ(2t)
Φ(2t − 1)
Φ(2t − 2)
Φ(2t − 3)


 ,

derived by integrating the scaling relation for ϕ. In our im-
plementation, we use a uniform rational grid with spacing 1

64
to represent these functions, but grids with different spacing
can easily be used.

6. Results

Here, we present the results obtained by our method using
the Haar and the D4 wavelets, in terms of speed, memory
efficiency and accuracy. We compare our method with some
of the best known methods for surface reconstruction based
on point cloud data. We show that, in terms of time, our tech-
nique outperforms these methods by an order of magnitude
(see Table 2) while producing surfaces whose accuracy is
comparable to the accuracy of the surfaces obtained by the
other methods (see Table 3).

We apply our algorithm to point clouds for which the sep-
arate point scans are already aligned in 3D. If the scans are
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Figure 5: Reconstruction of a hip bone using Haar wavelets with varying amounts of noise in the normals. From left to right:

0 degrees, 30 degrees, 60 degrees, 90 degrees uniform random rotational deviation in the normal direction.

not aligned, then we perform a preprocessing step that in-
volves a method like the one in [BR07]. We also assume
that each point sample pi on the surface has an associated
outwards unit normal ~ni to the surface at pi. If the data for
the normals is absent, we can estimate the normals using
a local PCA method or polynomial fitting. However, many
scanners produce not only point samples, but partially trian-
gulated scans reflecting the scanner’s estimate of which sam-
ples are connected from a single scanning direction (all of
the data in the Digital Michelangelo Project is of this form).
While these triangles are not sufficient to produce a closed,
triangulated model, they do give us the ability to estimate
normals efficiently. Furthermore, the orientation of the nor-
mal (inwards vs. outwards) can also be constructed robustly
from these scans since the scanners rely on visibility infor-
mation and the normals must be oriented in the direction of
the scanner.

The process of estimation of normals for our point sam-
ples from the data provided by laser range scanners can be
inaccurate and can introduce significant errors. However, we
show that our technique is robust with respect to errors in
the normal directions. Figure 5 shows several reconstruc-
tions where we incrementally add more noise to the input
normals. Even at 90 degrees, the surface is still faithfully re-
constructed. With more noise the reconstruction quality be-
gins to suffer noticeably, but at this noise level (> 90 degrees
deviation) the normals are pointing inwards to the surface
and begin to be meaningless.

Surface reconstruction using Haar wavelets is extremely
fast. Haar wavelets create a minimal number of coeffi-
cients in the octree. These coefficients can be computed very
quickly because the scaling and wavelet functions as well as
their integrals have an analytical form and the support of the
wavelet is small. Figure 6 shows a depth 14 reconstruction of
Michelangelo’s Awakening statue using Haar wavelets. This
data set is one of the largest we obtained and contains 381
million points. Despite its size, our method is able to produce
a faithful reconstruction in about 81 minutes.

For many real-world data sets, Haar wavelets create pleas-
ing surface reconstructions when the scans are well-aligned

Figure 6: “Awakening” with 381 million points (8.51 GB of

data) reconstructing using Haar wavelets at depth 14 took

about 81 minutes and produced over 590 million polygons.

We show two extreme zooms indicating that even small chisel

marks are reconstructed with a high degree of accuracy.

and the noise is relatively low. However, in some cases,
the reconstruction begins to fit noise in the data, due to the
small support of the Haar wavelet, and results in the appear-
ance of artifacts. Surface reconstruction using D4 wavelets
provides a much higher reconstruction quality compared to
Haar wavelets. The support of the basis functions is larger,
which makes the method more resilient to noise in the input
data. The larger support of this basis also increases the num-
ber of coefficients we have to store and their computation
time. Furthermore, using D4 wavelets roughly triples the
number of octree cells needed for the Haar wavelet. Never-
theless, reconstruction times are still quite fast. Figures 1, 8
and 7 (bottom right) are all reconstructed using D4 wavelets.

Table 1 shows reconstruction times for several popular
surface reconstruction methods for which implementations
are freely available, all operating on the same data set of 4.5
million points from David’s head and at a maximal octree
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Figure 7: Comparison of reconstructions of David’s head

with 4.5 million points (103 MB of data) at depth 9 with

MPU Implicits (top left), Poisson reconstruction (top right),

Haar wavelets (bottom left) and D4 wavelets (bottom right).

Method Time(sec) Memory(MB) Polygons
Ohtake et al 551 750 1582380
Bolitho et al 289 57 1257980
Haar Wavelet 17 13 1357872
D4 Wavelet 82 43 1377858

Table 1: Reconstruction of David’s head consisting of 4.5
million points at depth 9 with various methods.

depth of 9 where appropriate. All tests are run on an Intel
6700 with 2GB of RAM. [OBA∗03] is typically considered
a fast surface reconstruction algorithm, yet our method us-
ing D4 wavelets is roughly 6 times faster and Haar wavelets
over 30 times faster. Due to our streaming implementation,
our memory requirements are very low as well.

Table 2 includes reconstruction times for some of the
largest data sets that we could find. Many of these data sets
contain well-aligned scans and Haar wavelet reconstruction
performs well without many errors due to noise or mis-

Model Points Haar,12 Haar,13 Haar,14 D4,12
Barbuto 329M 38.7/100 58.3/252 81.6/777 111.9/329

Awakening 381M 45.5/100 62.4/187 80.8/573 133.3/339
Atlas 410M 51.7/133 59.0/351 97.6/1188 148.4/448

Table 2: Reconstruction of various models using Haar

and D4 wavelets at various depths. Data is of the form

time/memory where time is measured in minutes and mem-

ory in MB.

aligned scans. Our method using Haar wavelets was able to
process each of these data sets in under an hour at depth
12 and under 2 hours at depth 14. Using D4 wavelets was
slower but we were still able to complete even Atlas with
410 million points at depth 12 in under 2.5 hours.

It is difficult to measure the accuracy of a surface re-
construction if only point scans are available. Fitting the
points exactly may yield an undesirable surface away from
the point samples. Furthermore, gaps/holes in the data set
make the development of a good, two-sided error met-
ric challenging. We overcome this problem by sampling
points and normals densely from known polygon models
and then reconstructing surfaces with each method from
these points sets. We then compute the Hausdorff distance
between each reconstructed surface and the original shape
using Metro [CRS98]. Table 3 summaries the results. The
values for each row are normalized by the maximum error
among all methods to provide a relative comparison between
the different techniques. MPU is on average the worst among
the tested models, followed by the Poisson reconstruction,
which typically performs much better. However, in all cases,
Haar and D4 wavelets with and without smoothing recover
the surfaces with higher degree of accuracy than the Poisson
reconstruction and in only one case (the hand) does MPU
outperform the wavelet methods.

These results seem somewhat counter-intuitive as the
Poisson reconstruction in Figure 7 is obviously smoother
and appears more desirable than either the Haar or D4 recon-
structions. Good surface reconstruction routines must satisfy
the Hausdorff error metric since it measures if extraneous
sheets or bulgs are created; however, this error metric does
not measure normal quality. Both Haar and D4 wavelets pro-
duce surfaces that may have high frequency artifacts in the
normals since both wavelet bases are not smooth. As the
smoothness of the wavelet basis increases, these artifacts de-
crease but the surface will have a higher Hausdorff error,
which is why surfaces produced using D4 wavelets typi-
cally have higher Hausdorff error than those produced by
Haar wavelets but appear to be higher quality. Smoothing
the function mitigates the artifacts in the normals at the cost
to approximation quality, which is clearly seen in Table 3.
This is an illustration of a well known phenomenon where
approximation accuracy is sacrificed in order to reduce os-
cillations.
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Model MPU Poisson Haar Haar Smoothed D4 D4 Smoothed
armadilloman 1.000000 0.259120 0.153069 0.212276 0.151215 0.224511
happy buddha 1.000000 0.364243 0.223781 0.339264 0.346450 0.356715

cow 1.000000 0.086590 0.036725 0.046528 0.071015 0.074601
dragon 1.000000 0.790500 0.602828 0.536930 0.617106 0.636463

elephant 1.000000 0.507040 0.363651 0.221071 0.320602 0.372229
hand 0.332169 1.000000 0.380563 0.565324 0.335825 0.589883
hip 1.000000 0.110895 0.064997 0.093744 0.061002 0.091113

malaysia 1.000000 0.217397 0.151879 0.189831 0.144758 0.200062
teeth 0.835987 1.000000 0.418790 0.503185 0.471338 0.702229
venus 1.000000 0.371843 0.184752 0.260992 0.198316 0.285313

Table 3: Hausdorff distance between real surfaces and reconstructed surfaces from sampled data. Each row is normalized by

the worst geometric error (lower is better).

Figure 8: Reconstruction of Michelangelo’s Atlas with 410
million points (9.15 GB of data) at depth 12 with D4

wavelets took less than 2.5 hours and produced 42.7 million

polygons.

7. Future Work

In the future, we would like to implement other smoother
basis functions whose support size is relatively small. Con-
trolling support is important, because the size of the sup-
port of the basis functions is closely related to the compu-
tational cost and time efficiency of the algorithm, and thus
a smaller support leads to a faster algorithm. On the other
hand, smoother basis functions are needed for smoother re-
constructions, but smother functions require larger support.
We would like to understand quantitatively this dichotomy
and select a basis for which these two quantities are at
balance. Examples of bases we would like to explore in-
clude smoother wavelets, biorthogonal wavelets and quasi-
interpolants. In general, any basis that consists of smooth
compactly supported functions that allow multiscale decom-

position and have vanishing moments could be used with our
technique though.

Wavelets are renowned for their applications in image
compression and de-noising. In 3D, their localization prop-
erties allow us to efficiently represent χM in terms of its
wavelet coefficients and this is one of the main reasons
for the speed and efficiency of the proposed algorithm. We
would like to explore wavelet techniques for image de-
noising and how they can be used in the context of surface
reconstruction to create fast methods that are even more ro-
bust with respect to noise.
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Appendix A: The functions ~F e
j,k

We define

Φ(t) :=
∫ t

−∞
ϕ(s)ds, Ψ(t) :=

∫ t

−∞
ψ(s)ds.

Notice that Φ′(t) = ϕ(t) and Ψ′(t) = ψ(t), and for com-
pactly supported wavelets, Ψ will have the same support as
ψ, since ψ has at least a zero-th order vanishing moment,

i.e.
∫ ∞

−∞
ψ(s)ds = 0. We now define the following vector

functions ~F e
j,k for j ∈ N, k ∈ Z

3, and e ∈ E′,

~F
(0,0,0)

0,k (x) =

1
3 (Φ(x1 − k1)ϕ(x2 − k2)ϕ(x3 − k3),
ϕ(x1 − k1)Φ(x2 − k2)ϕ(x3 − k3),
ϕ(x1 − k1)ϕ(x2 − k2)Φ(x3 − k3)),

~F
(1,0,0)
j,k (x) = 2− j(Ψ(2 j

x1−k1)ϕ(2 j
x2−k2)ϕ(2 j

x3−k3),0,0),

~F
(0,1,0)
j,k (x) = 2− j(0,ϕ(2 j

x1−k1)Ψ(2 j
x2−k2)ϕ(2 j

x3−k3),0),

~F
(0,0,1)
j,k (x) = 2− j(0,0,ϕ(2 j

x1−k1)ϕ(2 j
x2−k2)Ψ(2 j

x3−k3)),

~F
(1,1,0)
j,k (x) =

2− j

2 (Ψ(2 jx1 − k1)ψ(2 jx2 − k2)ϕ(2 jx3 − k3),

ψ(2 jx1 − k1)Ψ(2 jx2 − k2)ϕ(2 jx3 − k3),0),

~F
(0,1,1)
j,k (x) =

2− j

2 (0,ϕ(2 jx1 − k1)Ψ(2 jx2 − k2)ψ(2 jx3 − k3),

ϕ(2 jx1 − k1)ψ(2 jx2 − k2)Ψ(2 jx3 − k3)),

~F
(1,0,1)
j,k (x) =

2− j

2 (Ψ(2 jx1 − k1)ϕ(2 jx2 − k2)ψ(2 jx3 − k3),0,

ψ(2 jx1 − k1)ϕ(2 jx2 − k2)Ψ(2 jx3 − k3)),

~F
(1,1,1)
j,k (x) =

2− j

3 (Ψ(2 jx1 − k1)ψ(2 jx2 − k2)ψ(2 jx3 − k3),

ψ(2 jx1 − k1)Ψ(2 jx2 − k2)ψ(2 jx3 − k3),

ψ(2 jx1 − k1)ψ(2 jx2 − k2)Ψ(2 jx3 − k3)).

Computing the divergence of ~F e
j,k shows that each of these

functions satisfies (5). Note that, for e 6= (0,0,0), the support
of ~F e

j,k is finite and the same as the support of ψe
j,k . While

the smoothness of the wavelet affects the surface accuracy
of the reconstruction, compact support of ~F is extremely im-
portant since, without it, the number of non-zero wavelet co-
efficients in (6) is proportional to the volume of the solid
rather than the surface area of the shape. This lack of locality
would render the reconstruction algorithm computationally
impractical for large data sets.
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